

Nuevos biomarcadores en Esclerosis Múltiple

Dra. Lorena García

Neurólogo especialista en Esclerosis Múltiple y Neuroinmunología.

Master en Neuroinmunología UAB.

Programa de Esclerosis Múltiple UC

Servicio de Neurología del CASR

Conflictos de interés

- .Educational grant Roche, Sanofi Genzyme and AstraZeneca.
- .Academic travel support from Roche and Merck.
- .Sub-investigator fees from Sanofi Genzyme (EFC 16034 EFC 17919)

Introducción biomarcadores en EM

Biomarcadores validados y emergentes

Integración a la práctica clínica

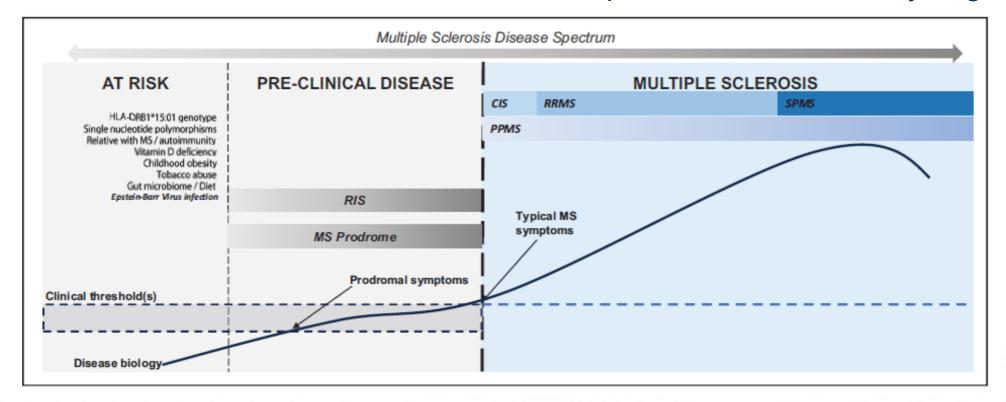
Experiencia local

Introducción biomarcadores en EM

Biomarcadores validados y emergentes

Integración a la práctica clínica

Experiencia local



Esclerosis Múltiple: un continuo clínico y biológico

Enfermedad inmunomediada del SNC con componentes inflamatorio y degenerativo.

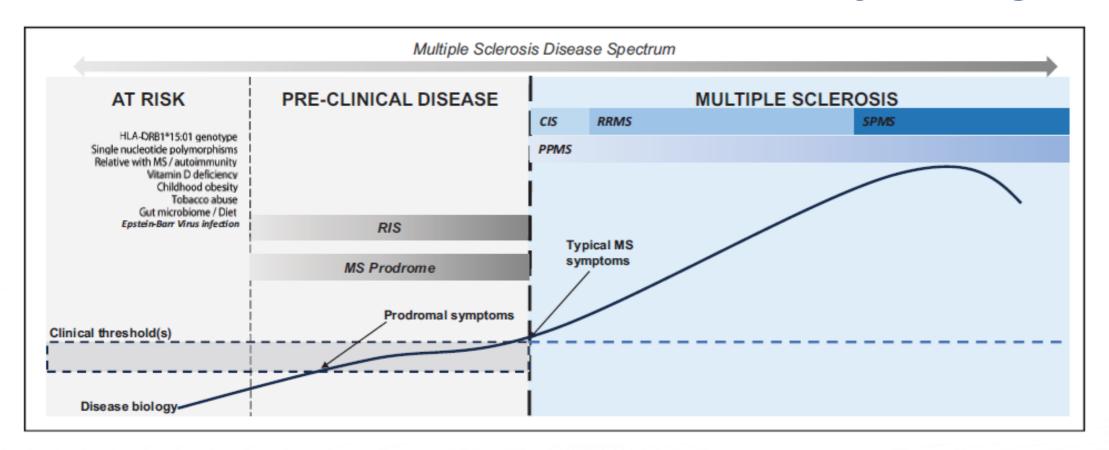
Diagnosis of multiple sclerosis: 2024 revisions of the McDonald criteria

El diagnóstico puede realizarse en cualquier fase de la enfermedad: RIS, CIS, Relapsing MS o Progresive MS

Biomarcador: característica medible que indica procesos biológicos normales, patológicos o respuestas a tratamientos.

Binario. Seguro. Validado




Fig. 1 Steps in the biomarker development process

Esclerosis Múltiple: un continuo clínico y biológico

Susceptibilidad
. HLA-DRB1*1501
. Infección VEB

Diagnóstico RM - LCR - OCT - PEV

Pronóstico RM - LCR - Suero - OCT RM - Suero - OCT

STLE SOCIEDAD MÉDICA DE LABORATORIO CLÍNICO

Fisiopatología de los biomarcadores biológicos

INMUNIDAD ADAPTATIVA

Linfocitos T

Linfocitos B:

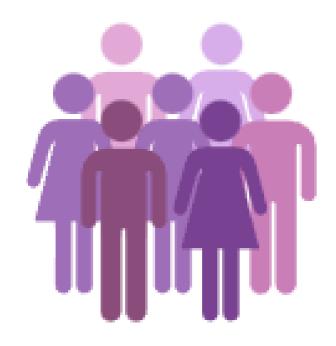
. IgM-IgG: sintesis - BOC
. Cadenas cadenas ligeras (kappa o lambda)
. Liberación de CXCL13

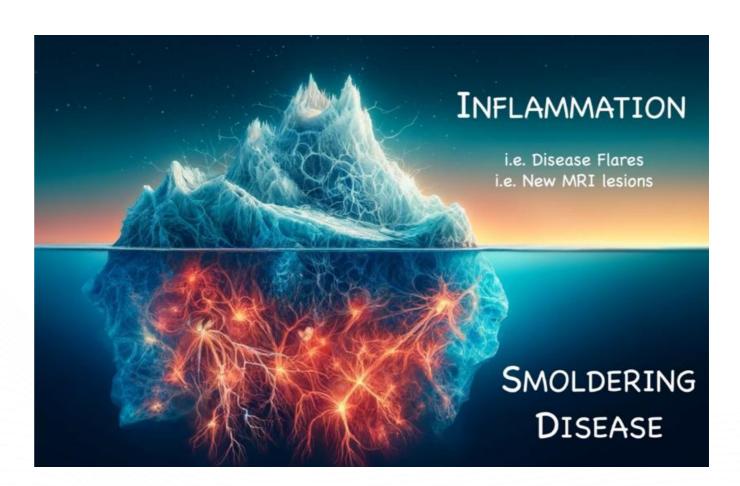
INMUNIDAD INNATA

Microglia . CHI3L1 . CHIT1 . sTREM2???

Astrocitos . GFAP . CHI3L1

DAÑO AXONAL (neuronal): NfL





Rol de los hiomarcadores en Esclerosis Múltiple

MEDICINA PERSONALIZADA:

caracterización y predicción individual de los pacientes.

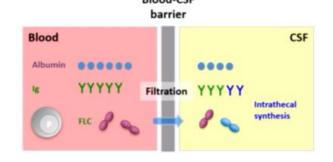
Muchos procesos inflamatorios y neurodegenerativos no se evidencian en la RM o la clínica. Los biomarcadores biológicos puede aportar marcadores objetivos de inflamación intratecal y daño axonal/glial.

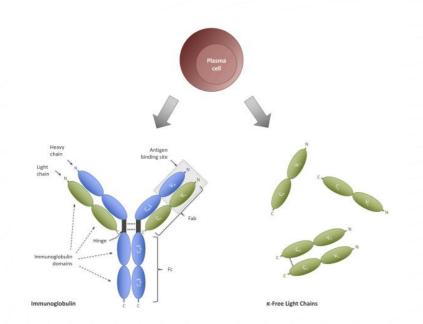
Introducción biomarcadores en EM

Biomarcadores validados y emergentes

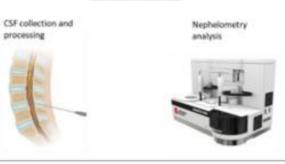
Integración a la práctica clínica

Experiencia local

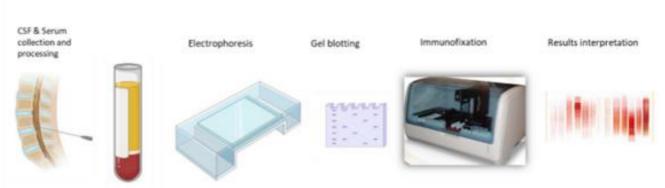




Biomarcadores linfocitos B: BOC IgG y K-FLC


. > 90% pwMS presentan ↑ producción intratecal de IgG

. Proporción secreción κ-FLC : λ-FLC 2 : 1.


Cuantitativa , < costo, interpretación objetiva Concordancia del 89% (κ = 0.8) con las BOC con un 0.92 mg/L. S 88% (52–100) y E 89% (69–100)*

KFLC analysis

Total time to results 25 minutes

Isoelectric focusing electrophoresis

Total time to results 3 hours 55 minutes

Cualitativa, > costo, interpretación subjetiva S 85% (37–100) y E 92% (74–100)*

Biomarcadores linfocitos B: BOC lgG y k-FLC

Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria

Diagnóstico RM - LCR - OCT - PEV . DIS 2/4

. BOC replazan DIT

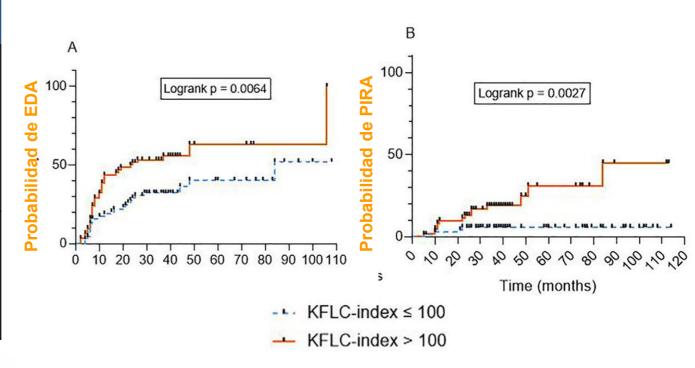
Biomarker discovery Assay development and validation Clinical and pathological validation Clinical implementation Regulatory approval and reimbursement

Pronóstico RM - LCR - Suero - OCT

Diagnosis of multiple sclerosis: 2024 revisions of the McDonald criteria

RECOMENDACIÓN: Indice κ-FLC ≥6,1

- . Criterios unificados: RIS, CIS, RMS, PMS.
- . DIS 2/5 → nervio óptico (MRI, VEP, OCT)
- . DIT no es estrictamente necesario → BOC / kFLC
- . MRI SWI: CVS PRL
- . Diagnóstico > específico: POMS y LOMS



Biomarcadores linfocitos B: BOC IgG y K-FLC

Biomarcador	Pronóstico
BOC IgG 90% pacientes	Conversión de RIS/CIS a EMCD Mayor discapacidad
	CIS OR: 9,88 para EMCD y OR 1,96 discapacidad (1).
K-FLC	Conversión de RIS/CIS a EMCD (1-2) Mayor actividad clínica y discapacidad
	CIS OR: 9,88 para EMCD (1).

KFLC ≥ 100

Nuevas lesiones en médula e infratentoriales (2): Univariado: OR 6.90

(p=0.003). Multivariable: OR 8.07 (p=0.019)

PIRA aHR 3.7 (95%CI 1.1–12.3), p = 0.03 en 5 años (3)

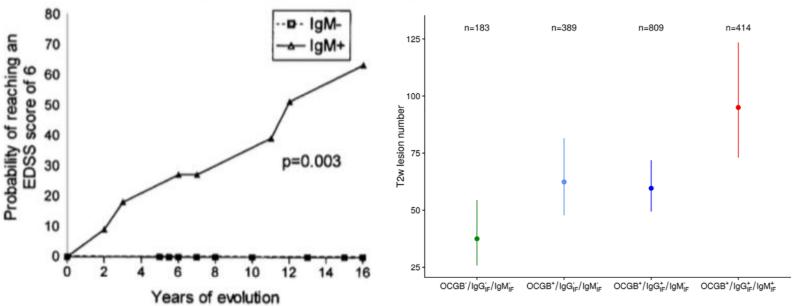
EDA aHR 2.1 (IC 95% 1.25–3.61, p = 0.005) (3)

Biomarker discovery

Assay development and validation

Clinical and pathologica validation

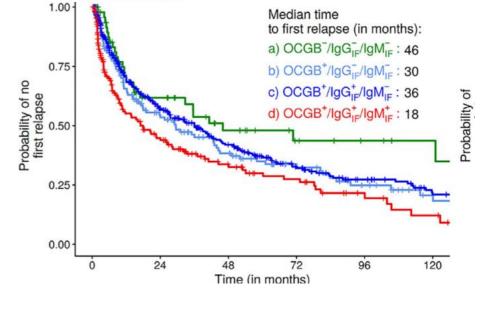
Clinical implementation Regulatory
approval and
reimbursement

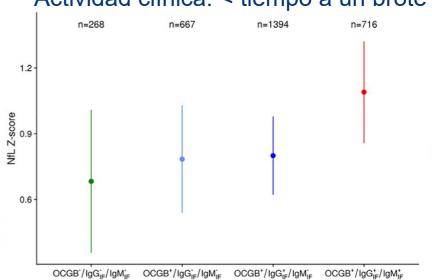


CONGRESO 5 - 6 DE NOVIEMBRE

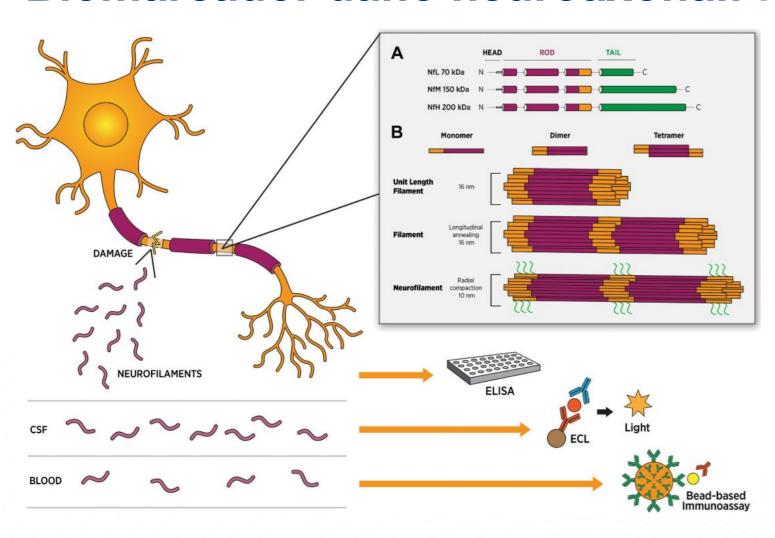
Biomarcadores linfocitos B: BOC IgM

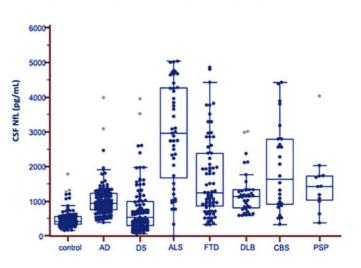
Biomarcador	Pronóstico
BOC IgM 30-40% pacientes	. Mayor actividad: >ARR, >cargalesional.. Mayor discapacidad.. Correlación NfL

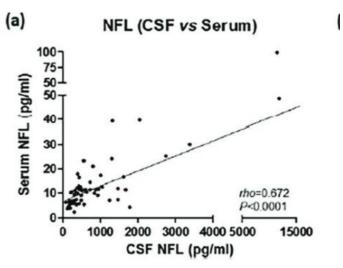



Actividad MRI: ↑ lesiones T2

Daño axonal: ↑ NfL


Mayor discapacidad: 63% EDSS 6

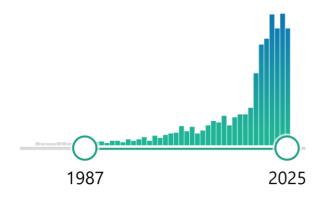



Biomarcador daño neuroaxonal: neurofilamento

Papel EM: envuelta por macrófagos y microglia → ↑ autoinmunidad contra los antígenos neuronales

↑ NfL enfermedades neurológicas

Correlación CSF con suero



Biomarcadores daño neuronal: neurofilamento

Plataformas:

Simoa® (Quanterix: detección digital de molécula única)

Elecsys® - Atellica® - Lumipulse®: ECL

ELLA ®: inmunofluorescencia.

Simoa vs Ella: correlación (r = 0.86, p < 0.0001). Ella sobreestimó los valores en un 17%, pero dado que los datos eran lineales (p = 0.57),

Simoa®, Elecsys®, Atellica®, Lumipulse®: R² ≥ 0.95, pero con valores no intercambiales

Immunoassays							
Targeted							
Simoa	ELISA	Chemiluminescence and electrochemiluminescence	ELLA				
Discovery Targeted In research In the clinic	Discovery Targeted In research In the clinic	Discovery Targeted In research In the clinic	Discovery Targeted In research In the clini				
Highly expensive	Low-cost	Low-cost	Expensive				
Intermediate multiplex capabilities	Low multiplex capabilities	Low multiplex capabilities	Intermediate multiplex capabilities				
High throughput	High throughput	High throughput	High throughput				
Very high sensitivity	Low sensitivity	High sensitivity	High sensitivity				
High specificity*	High specificity*	High specificity*	High specificity*				
Simple sample preparation	Simple sample preparation	Simple sample preparation	Simple sample preparation				
Easy data analysis	Easy data analysis	Easy data analysis	Easy data analysis				

Método de detección recomendado

LCR: ELISA

Suero: Simoa.

*** Mismo laboratorio

Guidance for use of neurofilament light chain as a cerebrospinal fluid and blood biomarker in multiple sclerosis management

sNfL ↑ → brote → aparición de Gd+

↑ sNfL 6m-1 año antes del brote

↑ sNfL 1-2 años antes de CDW (+GFAP)

Respuesta Terapéutica

Descenso ≥40% tras DMT = buena respuesta.

Meses para normalización de NfL en LCR tras tratamiento efectivo (1)

Factores de confusión

Edad \uparrow , IMC \downarrow , ERC $\uparrow \rightarrow$ ajustar por z-score.

El uso de Z-scores o percentiles + RM + clínica

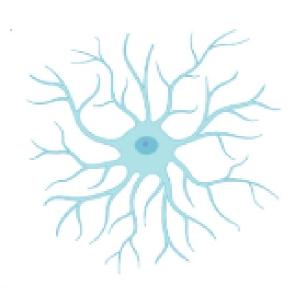
- . Z > 1.5 o >90.º percentil → alto riesgo de reactivación o progresión próxima.
- . Descenso de Z-score tras DMT → buena respuesta DMT

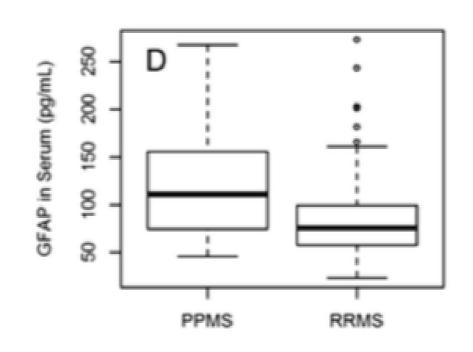
FDA 2021 y EMA 2022

Biomarker discovery Assay development and validation

Clinical and pathological validation

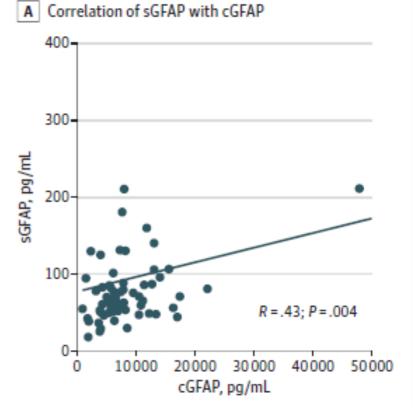
Clinical implementation


Regulatory approval and reimbursemer



Biomarcadores astrocito: GFAP

Papel EM: liberado por astrocitos reactivos



Método de detección recomendado LCR: ELISA

Suero: Simoa.

*** Mismo laboratorio

Factores de confusión

Edad \uparrow , $\uparrow\uparrow$, IMC \downarrow \rightarrow ajustar por z-score.

Plataformas:

SIMOA (newly developed single - molecule array)

Ella®

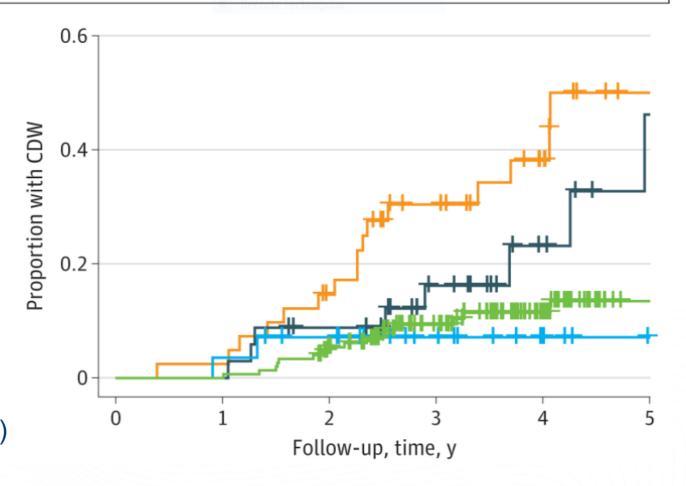
Alinity

MSD S-PLEX®

Biomarcadores astrocito: GFAP

Biomarcador	Pronóstico
GFAP (LCR - suero)	. Discapacidad: CDW, PIRA . Correlación con atrofia SG - tálamo

GFAP detecta progresión "silenciosa" (sin recaídas ni lesiones activas)


Z > 3 = CDW red flag

CDW en 6 meses - Z-score

GFAP $>3 \rightarrow$ HR 2.88 (IC95%: 1.21–6.84; p = 0.016)

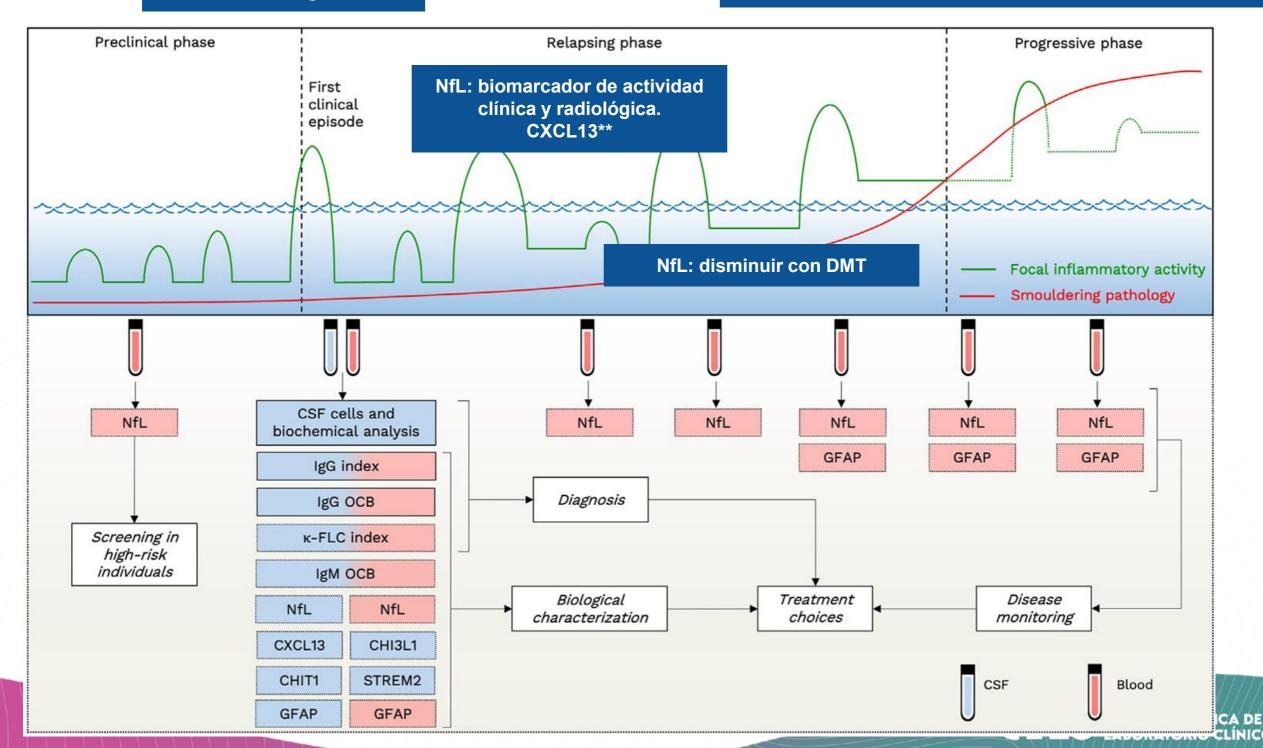
GFAP >3 + NfL \leq 1 \rightarrow HR 4.31, p=0.006

Introducción biomarcadores en EM

Biomarcadores validados y emergentes

Integración a la práctica clínica

Experiencia local



BOC, κ-FLC → mayor riesgo de EMCD / diagnóstico

Progresiva: GFAP, CHI3L1, CHIT1. Inflamación compartimentalizada y neurodegeneración glial.

Diagnóstico de Esclerosis Múltiple: BOC o kFLC?

Positive cerebrospinal fluid in the 2024 McDonald criteria for multiple sclerosis

- κ-FLC y/o BOC (gold standard) uso según disponibilidad.
- κ-FLC como prueba de primera línea
- BOC como confirmación en casos dudosos*

 κ -FLC <3.3 \rightarrow BOC (-) VPN 99%

k-FLC 3.4-6 → realizar BOC ** o vicecersa

 κ -FLC > 6.1 → BOC (+) → confirma EM sin BOC

Cada laboratorio debe validar el punto de corte k-FLC index 6.1

Pronóstico de Esclerosis Múltiple

1

Criterios McDonald 2024 → diagnóstico más temprano, estratificar riesgo, predecir progresión y personalizar tratamiento.

Interpretación integrada:

*Carga lesional

Respuesta inmune intratecal.

Daño axonal y glial en curso

2

Los biomarcadores **NfL** y **GFAP** → diferenciar EM remitente de EM progresiva.

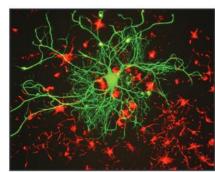
- NfL: biomarcador de actividad
- GFAP: biomarcador emergente de progresión.

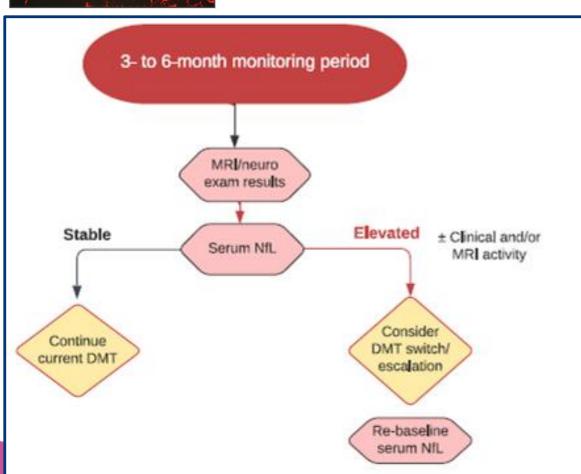
RM + LCR + suero constituye el nuevo paradigma clínico-prognóstico de la EM.

 Inflamatorio activo → NfL↑, RM+ → DMT alta eficacia -Escalamiento terapéutico.

KFLC ≥ 100: > actividad clínica, radiológica y CDW

 Degenerativo no inflamatorio → GFAP↑, NfL↔ → Enfoque neuroprotector y rehabilitador.





Respuesta a tratamiento de Esclerosis Múltiple

CMSC Consensus Statement on Neurofilament Biomarkers in Multiple Sclerosis

Guidance for use of neurofilament light chain as a cerebrospinal fluid and blood biomarker in multiple sclerosis management

Medición basal: al diagnóstico o previo a DMT.

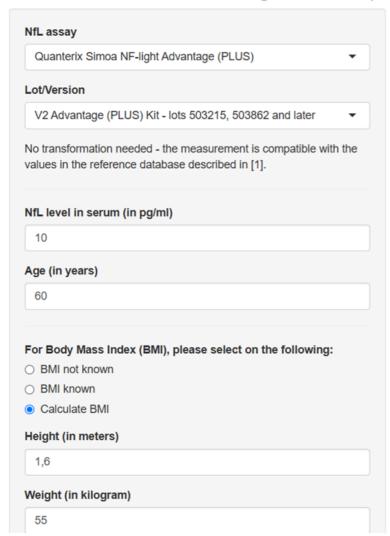
Control: a los 3–6 meses tras recaída o cambio de DMT.

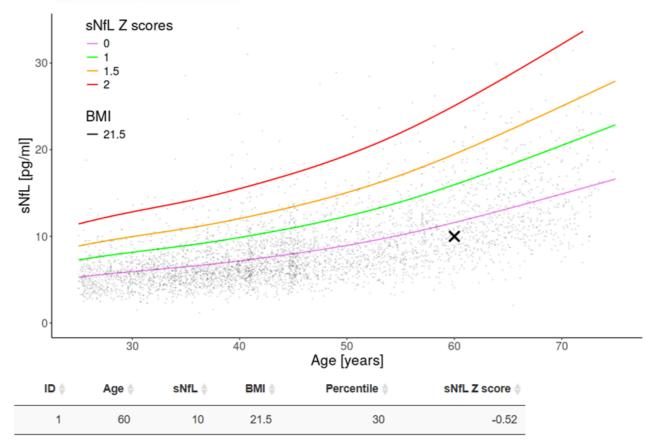
- ↓ ≥40% → respuesta favorable
- ↑ o sin cambio → escalamiento DMT

Complementar con: RM, OCT, EDSS.

Usar z-score o percentiles ajustados por edad/IMC/VFG.

Integrar con GFAP en pacientes con EM progresiva.





Serum Neurofilament Light Chain Reference App

Serum Neurofilament Light Chain (sNfL) Reference App for the Simoa NF-light assay (HD-X)

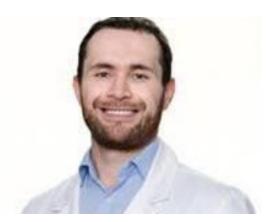
sNfL of 10 pg/ml at 60 years and BMI of 21.5 kg/m²: Z score=-0.52

A serum NfL (sNfL) level of 10 pg/ml as measured by the **Simoa NF-light (Quanterix; on the HD-X machine)** assay at an age of 60 years and a BMI of 21.5 kg/m² corresponds to a **sNfL Z score of -0.52** (i.e. number of standard deviations from the mean in healthy controls) which is equivalent to the **30th**

Introducción biomarcadores en EM

Biomarcadores validados y emergentes

Integración a la práctica clínica


Experiencia local

Radiologically isolated syndrome: A 6-year follow-up study in Chile

Felipe Condeza ^a, Alicia Muñoz ^a, Carolina Pelayo ^a, Lorena García ^{a,b}, Adolfo Del-Canto ^a, Manuel Orellana ^a, Leticia Gutierrez ^a, Ignacio Guzman ^a, Lukas Jürgensen-Heinrich ^a, Juan De-La-Barra ^a, Nicole Guenim ^a, Sebastian Bravo-Grau ^c, Juan-Pablo Cruz ^c, Bernardita Soler ^{a,b}, Claudia Cárcamo ^a, Ethel Ciampi ^{a,b,*}

Inclusion Criteria

DIS 2/4 - Group 2 infratentorial periventricular yuxtacortical/cortical spinal cord

1/5 DMT start NEDA3 100%

7/7 DMT start NEDA3 43%

12/16 DMT start NEDA3 67%

848 MS patients
28 RIS (Prevalence 3.3%)
82% women
Median age at RIS 34 (20-54 years)
Family history of MS 13%

X

median time to first clinical symptom 21 months median follow-up 72 months (1-157)

FR: edad < 37 años, BOC, lesión médula y lesión infratentorial.

Índice Kappa en Líquido Cefalorraquídeo

Elaborado en Abril 2025 por Dr. Francisco Vera. Revisado y Aprobado por TM Jacqueline Parada.

Código del Examen

Nombres del Examen

: K-Index en LCR, Síntesis intratecal de cadenas livianas Kappa libres

Características demográficas		DIT EM		
Sexo	Edad	Fenotipo	BOC	Kappa
M	25	Recurrente	(-)	(-)
F	47	Progresivo	(+)	(+)
F	41	Progresivo	(+)	(+)
M	38	Recurrente	(+)	(+)
F	40	RIS	(-)	(+)
M	36	Recurrente	(+)	(+)
/F /	25	Recurrente	(+)	(+)
/ /F / /	25	RIS	(+)	(+)

Método: turbidimetría

DIT

: 3000

BOC positivas: 6/7

Índice Kappa positivo: 7/7 → 15%

Concordancia

McNemar: p = ns (muestra pequeña)

PABAK = 0.71 → Concordancia sustancial

Mensajes claves

Los biomarcadores biológicos de diagnóstico, pronóstico y respuesta terapéutica permiten objetivar la inflamación intratecal y el daño axonal/glial.

Diagnóstico: κ-FLC - BOC según disponibilidad, BOC si hay duda o viceversa.

Progresión: GFAP.

En evaluación: CXCL13 y nuevas aplicaciones

de κ-FLC.

MEDICINA PERSONALIZADA:

caracterización y predicción individual de los pacientes.

Es imprescindible **fortalecer estudios en vida real** para validar el uso sistemático de biomarcadores en la práctica clínica.

